首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61353篇
  免费   27438篇
  国内免费   43414篇
地球科学   132205篇
  2024年   107篇
  2023年   673篇
  2022年   1661篇
  2021年   2072篇
  2020年   3083篇
  2019年   6384篇
  2018年   6970篇
  2017年   6623篇
  2016年   6933篇
  2015年   5907篇
  2014年   5807篇
  2013年   6282篇
  2012年   5925篇
  2011年   5776篇
  2010年   5668篇
  2009年   5081篇
  2008年   4197篇
  2007年   4230篇
  2006年   3714篇
  2005年   3509篇
  2004年   3494篇
  2003年   3213篇
  2002年   2924篇
  2001年   2809篇
  2000年   2584篇
  1999年   3145篇
  1998年   2891篇
  1997年   2967篇
  1996年   2439篇
  1995年   2328篇
  1994年   2053篇
  1993年   1923篇
  1992年   1588篇
  1991年   1189篇
  1990年   1008篇
  1989年   894篇
  1988年   791篇
  1987年   585篇
  1986年   469篇
  1985年   348篇
  1984年   368篇
  1983年   221篇
  1982年   273篇
  1981年   188篇
  1980年   147篇
  1979年   128篇
  1978年   65篇
  1977年   53篇
  1971年   54篇
  1958年   49篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
1.
Numerous efforts have been made to understand stemflow dynamics under different types of vegetation at the inter-event scale, but few studies have explored the stemflow characteristics and corresponding influencing factors at the intra-event scale. An in-depth investigation of the inter- and intra-event dynamics of stemflow is important for understanding the ecohydrological processes in forest ecosystems. In this study, stemflow volume (FV), stemflow funnelling ratio (FR), and stemflow ratio (F%) from Quercus acutissima and Broussonetia papyrifera trees were measured at both inter- and intra-event scales in a subtropical deciduous forest, and the driving factors, including tree species and meteorological factors were further explored. Specifically, the FV, FR and F% of Q. acutissima (52.3 L, 47.2, 9.6%) were lower than those of B. papyrifera (85.1 L, 91.2, 12.4%). The effect of tree species on FV and F% was more obvious under low intensity rainfall types. At the inter-event scale, FV had a strong positive linear correlation with rainfall amount (GP) and event duration (DE) for both tree species, whereas FR and F% had a positive logarithmic correlation with GP and DE only under high-intensity, short-duration rainfall type. FR and F% were mainly affected by wind speed and the maximum 30-min rainfall intensity under low-intensity, long-duration rainfall type. At the intra-event scale, for both tree species, the mean lag time between the start of rainfall and stemflow was the shortest under high-intensity, short-duration rainfall type, while the mean duration and amount of stemflow after rain cessation were the greatest under high-amount, long-duration rainfall type. The relationship between stemflow intensity and rainfall intensity at the 5-min interval scale also depended greatly on rainfall type. These findings can help clarify stemflow dynamics and driving factors at both inter- and intra-event scales, and also provide abundant data and parameters for ecohydrological simulations in subtropical forests.  相似文献   
2.
Dissolved pollutants in stormwater are a main contributor to water pollution in urban environments. However, many existing transport models are semi-empirical and only consider one-dimensional flows, which limit their predictive capacity. Combining the shallow water and the advection–diffusion equations, a two-dimensional physically based model is developed for dissolved pollutant transport by adopting the concept of a ‘control layer’. A series of laboratory experiments has been conducted to validate the proposed model, taking into account the effects of buildings and intermittent rainfalls. The predictions are found to be in good agreement with experimental observations, which supports the assumption that the depth of the control layer is constant. Based on the validated model, a parametric study is conducted, focusing on the characteristics of the pollutant distribution and transport rate over the depth. The hyetograph, including the intensity, duration and intermittency, of rainfall event has a significant influence on the pollutant transport rates. The depth of the control layer, rainfall intensity, surface roughness and area length are dominant factors that affect the dissolved pollutant transport. Finally, several perspectives of the new pollutant transport model are discussed. This study contributes to an in-depth understanding of the dissolved pollutant transport processes on impermeable surfaces and urban stormwater management.  相似文献   
3.
The alkali element K is moderately volatile and fluid mobile; thus, it can be influenced by both primary processes (evaporation and recondensation) in the solar nebula and secondary processes (thermal and aqueous alteration) in the parent body. Since these primary and secondary processes would induce different isotopic fractionations, K isotopes could become a potential tracer to distinguish them. Using recently developed methods with improved precision (0.05‰, 95% confidence interval), we systematically measured the K isotopic compositions and major/trace elemental compositions of chondritic components (18 chondrules, 3 CAIs, 2 matrices, and 5 bulks) in the carbonaceous chondrite fall Allende. Among all the components analyzed in this study, CAIs, which formed initially under high‐temperature conditions in the solar nebula and were dominated by nominally K‐free refractory minerals, have the highest K2O content (average 0.53 wt%) and have K isotope compositions most enriched in heavy isotopes (δ41K: ?0.30 to ?0.25‰). Such an observation is consistent with previous petrologic studies that show CAIs in Allende have undergone alkali enrichment during metasomatism. In contrast, chondrules contain lower K2O content (0.003–0.17 wt%) and generally lighter K isotope compositions (δ41K: ?0.87‰ to ?0.24‰). The matrix and bulks are nearly identical in K2O content and K isotope compositions (0.02–0.05 wt%; δ41K: ?0.62 to ? 0.46‰), which are, as expected, right in the middle of CAIs and chondrules. This strongly indicates that most of the chondritic components of Allende suffered aqueous alteration and their K isotopic compositions are the ramification of Allende parent‐body processing instead of primary nebular signatures. Nevertheless, we propose the small K isotope fractionations observed (< 1‰) among Allende components are likely similar to the overall range of K isotopic fractionation that occurred in nebular environment. Furthermore, the K isotope compositions seen in the components of Allende in this study are consistent with MC‐ICP‐MS analyses of the components in ordinary chondrites, which also show an absence of large (10‰) isotope fractionations. This is not expected as evaporation experiments in nebular conditions suggest there should be large K isotopic fractionations. Nevertheless, possible nebular processes such as chondrules back exchanging with ambient gas when they formed could explain this lack of large K isotopic variation.  相似文献   
4.
The simultaneous transfer of pore fluid and vapour was studied in the unsaturated shallow subsurface of a Plio-Pleistocene marine mudstone badland slope in southwestern Taiwan during the dry season using field monitoring data and numerical simulations. Data from field monitoring show mass-basis water contents of ~0.05 to ~0.10 that decrease towards the unsaturated ground surface and were invariant during the middle part of the dry season, except for daily fluctuations. In addition, the observed daily fluctuations in water content correlate with fluctuations in bedrock temperature, especially at depths of 2.5–5.0 cm. Periodic increases in water content occurred most notably during the day, when the bedrock temperature showed the greatest increase. Water contents then decreased to the previous state as bedrock temperature decreased during the night. Calculated vapour fluxes within the mudstone during the day increased up to 6 × 10−6–1 × 10−5 kg m−2 s−1, deriving a 0.01–0.02 increase in mass-basis water content at 2.5 cm depth for a 12-h period. This agrees with field monitoring data, suggesting that increases in water content occurred due to vapour intrusions into the bedrock. Pore water electrical conductivity (EC) showed periodic variations due to vapour intrusion, and gradually increased between the ground surface and depths of 2.5–5.0 cm. In contrast, pore water EC gradually decreased between 15 and 40 cm depth. Calculated water fluxes at depths of 2.5–40.0 cm varied from −4 × 10−6 to −2 × 10−9 kg m−2 s−1. These fluxes generated an increase in solute concentrations at the ground surface, with negative values of water flux indicating an upwards movement of water towards the surface. We show that the increase in solute content due to solute transfer from depth is highly dependent on variations in water flux with depth. © 2020 John Wiley & Sons, Ltd.  相似文献   
5.
Salinity is a vital factor that regulates leaf photosynthesis and growth of mangroves, and it frequently undergoes large seasonal and daily fluctuations creating a range of environments – oligohaline to hyperhaline. Here, we examined the hypotheses that mangroves benefit opportunistically from low salinity resulting from daily fluctuations and as such, mangroves under daily fluctuating salinity (FS) grow better than those under constant salinity (CS) conditions. We compared growth, salt accumulation, gas exchange, and chlorophyll fluorescence of leaves of mangrove Bruguiera gymnorhiza seedlings growing in freshwater (FW), CS (15 practical salinity units, PSU), and daily FS (0–30 PSU, average of 4.8 PSU) conditions. The traits of FS-treated leaves were measured in seedlings under 15 PSU. FS-treated seedlings had greater leaf biomass than those in other treatment groups. Moreover, leaf photosynthetic rate, capacity to regulate photoelectron uptake/transfer, and leaf succulence were significantly higher in FS than in CS treatment. However, leaf water-use efficiency showed the opposite trend. In addition to higher concentrations of Na+ and Cl, FS-treated leaves accumulated more Ca2+ and K+. We concluded that daily FS can enhance water absorption, photosynthesis, and growth of leaves, as well as alter plant biomass allocation patterns, thereby positively affecting B. gymnorhiza. Mangroves that experience daily FS may increase their adaptability by reducing salt build-up and water deficits when their roots are temporally subjected to low salinity or FW and by absorbing sufficient amounts of Na+ and Cl for osmotic adjustment when their roots are subsequently exposed to saline water.  相似文献   
6.
针对悬臂柱顶有拉梁和无拉梁层间隔震体系的抗震性能问题,运用增量动力分析(IDA)方法进行弹塑性分析,模拟结构从弹性到弹塑性直至最后倒塌的全过程。通过调幅地震动得到相应的层间位移角及峰值加速度,分别绘制单条与多条IDA曲线分析拉梁对隔震结构动力响应的影响,研究两种结构的抗震性能。结果表明:在相同性能点,有拉梁和无拉梁对纤维铰弯矩值和曲率值基本无影响,而在不同性能点,纤维铰状态明显不同;两种体系从正常使用阶段到防止倒塌阶段所需的加速度峰值的差距慢慢增大;在极罕遇地震下,柱顶有拉梁层间隔震体系的下部结构抗震性能要高于柱顶无拉梁层间隔震体系。  相似文献   
7.
王颖  段霞  吴康 《地理科学》2020,40(5):786-792
剖析北京“腾笼换鸟”产业转型升级的现状,在针对“新鸟”进笼“老鸟”去哪问题,“老笼”空间结构合理优化问题,“老鸟”涅槃“新鸟”培育问题,“老鸟”和“新笼”承接问题的分析基础上,提出应完善京津冀产业链协作,“腾笼换鸟”拓展区域联动发展空间;东西城合并成首都特区,“腾笼换鸟”保护北京历史文化名城;切实发挥政府的职能作用,“腾笼换鸟”提升企业内在动力机制;规划建设“微中心”小城镇,“腾笼换鸟”促进北京人口有效疏解的建议。  相似文献   
8.
郭政  姚士谋  吴常艳 《地理科学》2020,40(12):1949-1957
采用空间分析和空间杜宾模型等方法,研究1999—2017年中国工业烟粉尘排放时空演化特征及其影响因素。结果表明:① 中国工业烟粉尘排放空间分布差异明显,其排放的基尼系数和污染物分布指数均呈现下降态势,空间集中程度有所缓和。② 中国工业烟粉尘排放空间分布呈东北?西南走向,其排放中心不断由东南向西北方向迁移。③ 中国工业烟粉尘排放存在空间相关性和空间溢出效应,其冷热点区空间分布发生显著变化。④ 能源消耗、第二产业比重、人口密度和经济发展水平的提升将会增加工业烟粉尘排放,而外资水平、治理技术水平和环境规制力度的提升则有利于减少工业烟粉尘排放。  相似文献   
9.
马巍  王民 《地理教学》2020,(4):11-13,29
情境教学是培养学生核心素养的重要教学方法,本文提出了情境教学的课堂评价原则:情境具有真实性、情境与教学目标具有关联性、情境应划分水平。同时提出从情境的结构和关系、解决情境中的问题所涉及地理要素的数量及其关联程度两个角度分别对情境水平进行划分,并结合“资源枯竭型城市的发展方向”课例,提出目前情境教学中存在的问题及教学改进建议。  相似文献   
10.
作为重要的土壤物理性质,膨胀性在影响土壤导水性、持水性、抗蚀性以及土壤结构的形成和发育等方面发挥着重要作用。为了探讨生物土壤结皮(BSCs)土壤的膨胀特性及其主要影响因素,针对黄土高原风沙土和黄绵土两种典型土壤,利用膨胀仪测定并比较了有、无藓结皮及其在不同因素(初始含水量、干湿循环、冻融循环、温度)下膨胀率的差异,分析了BSCs对土壤膨胀性的影响及其与环境因素和BSCs性质的关系。结果显示:风沙土上藓结皮的膨胀率为1.93%,较无结皮增加了8.65倍;而黄绵土上藓结皮的膨胀率为2.05%,与无结皮相比降低了76.68%。藓结皮的生物量和厚度与其膨胀率在风沙土上均呈线性正相关关系(P < 0.05),在黄绵土上分别呈二次函数(P=0.02)和线性正相关关系(P=0.02)。初始含水量同时影响了土壤最大膨胀率和稳定膨胀时间,影响程度风沙土远大于黄绵土(包括藓结皮和无结皮);干湿循环次数对无结皮土壤膨胀率的影响程度大于藓结皮土壤,其中风沙土和黄绵土上无结皮的膨胀率分别是50.00%~620.00%和-2.28%~10.81%,而两种土壤上藓结皮的膨胀率分别是-5.70%~10.88%和-10.24%~-21.46%;冻融循环下4种土壤的膨胀率均有不同程度的降低,降幅为0~18.54%。黄绵土无结皮的膨胀率受温度影响程度较大,50℃下黄绵土无结皮的膨胀率分别是25℃和35℃下的1.17倍和1.21倍。BSCs显著地改变了风沙土和黄绵土表层的膨胀性,其影响的程度和方向取决于土壤类型。同时,BSCs的膨胀性受含水量、温度、干湿以及冻融循环等关键因素影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号